3年 組 番 名前

学習課題

計測・制御システムを使って、社会の問題を解決しよう

1. 自分のスイートバジルの栽培を振り返ろう

大変だった管理作業は?	品質・収量を向上させるために必要なことは?

2. 社会にある問題を計測・制御の技術を用いて解決しよう

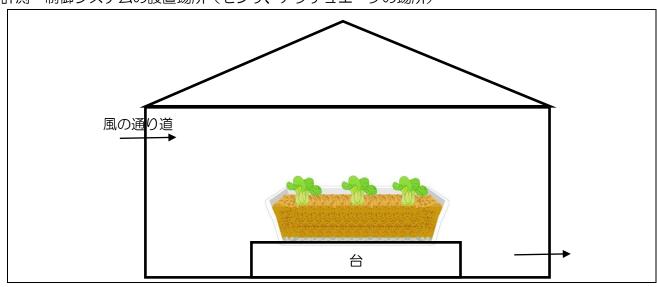
技術の視点:品質・収量の効率→∞、利便性→愈、安全性→⑤、環境への負荷→⑤、経済性→⑥

問題	どんな影響が起こるか?	視点	課題(計測・制御システムで〇〇したい、〇〇にならないか)
人材不足	食料がなくなる		自動で管理作業ができないか?
	輸入に頼り、食費が上がる	₩	
	輸入に頼り、食の安全性が低下する	②	データ化して管理できないか?
	高齢者の作業が増え、事故の可能性増	②	
高齢化	作業が遅くなる	利	大変な作業を減らせないか?
	誤った操作による事故	②	操作の簡略化、自動化
異常気象	温度管理が大変	利	環境の管理を自動でできないか?
	生産量のばらつき、影響、不作		
	施設が壊れる		予防するシステム
継承者不足	ノウハウが引き継げないので、品質の低下		だれでも同じように作業ができないか?
	農薬の間違った使用	\bigcirc	
食料自給率が低い			

今回は、出てきた課題を「管理作業の自動化」を通して、解決していきます!

3. 課題の解決方法の折り合いをつけ、解決すべき影響の優先順位をつけよう

優先 順位	どんな影響が減らせるか?	どんなシステムで 解決するか?	視点 ←	→ 視点	そのシステムにした場合の マイナス点
	大変な作業を減らせないか	必要なタイミングでかん水して	刻 匍	②	誤作動によって植物がかれ
		くれるシステム		\otimes	る心配
	環境の管理を自動でできな	目的の温度に室温を調整で	刻	<u> </u>	暖房と冷房によってエネル
	いか	きるシステム		(利) (景)	ギーが必要
	自動で管理作業ができない	目的の日長に照明を制御で	∅€	€ S	設備投資と照明代がかかる
	か	きるシステム			
なげる	アの優先順位にしたのか?				


4. 課題を解決するシステムを考えよう

時期は・・・ (A:生育途中 ・ B:収穫間近)

○情報処理の手順の流れ

センサ・アクチュエータ	コンピュータ	工夫したところ
計測•作業•管理	判断	エスひにここう
•		

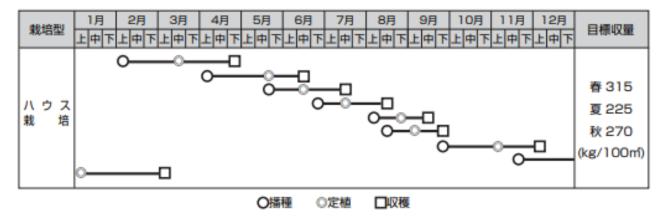
○計測・制御システムの設置場所(センサ、アクチュエータの場所)

○開発したシステムについて

どんな影響を改善できるか?	どの管理作業を自動化したか?	折り合いに対する考え方

5. 解決策から新たに出てきた課題

課題	視点


計測・制御システム構想補助資料

1. 条件

- ① オールメイを使用して、課題解決をする。
- ② センサは、音センサ、タッチセンサ、温度センサ、磁気センサ、傾きセンサ、人感センサ、 光センサ、湿度センサとする。
- ③ アクチュエータは、LED(光)、モータ(動力)、オルゴール(音)とする。
- ④ 使用できるセンサ、アクチュエータの数は、ともに2個までとする。
- ⑤ モータの先の形状・構造や取り付ける高さ、角度等も考えること。材料は自由。
- ⑥ 自動化する管理作業は、温度、湿度、光、かん水、追肥(液体)、病害虫の防除とする。 ※培養土を用いた栽培で考える。

2. 栽培物について

- 育てる作物はチンゲンサイ(長日植物)とする。
- ・生育適温は20℃前後。
- 11月下旬に種まきをした場合とする。
- 株間は15cmとする。収穫の目安は20cmとする。
- A:生育途中(1月下旬、平均気温4℃)B:収穫間近(3月上旬、平均気温8℃)
- 栽培ごよみ

http://www.maff.go.ip/i/seisan/kankyo/hozen_type/h_sehi_kizyun/attach/pdf/aki3-16.pdf

3. 施設について

- プラスチックハウス (パイプハウス)
- 台は高さが 20 c m、脚付きのもので、通気性があるものとする。
- 軒高5m、棟高7m

