主な研究分野

電子技術、食品・バイオ技術、加工技術、金属材料技術、測定技術、機械装置技術、福祉技術、 資源環境技術及びデザインなど、各分野に精通した職員が各種技術支援に対応しています。相談 は無料となっておりますので、ぜひご活用ください。

		•
	担 当 部 署	技 術 分 野・事 業 内 容
本	材料技術担当	金属強度試験、金属表面解析、表面処理、腐食試験、耐候性試験、破面分析、 非破壊試験、鋳造CAE
	化学技術担当	無機分析(鉄鋼・非鉄金属等)、有機分析(プラスチック、ゴム等)、資源環境技術
	機械技術担当	機械加工、機械装置技術、積層造形、CAE(シミュレーション技術)、精密測定、 3Dデジタル技術、成形加工、複合材料、熱分析、振動試験、衝撃試験
	電気・電子技術・ 戦略プロジェクト担当	電磁波測定技術、高周波測定技術、Al·loT技術、制御技術、電池関連技術、 医療・福祉技術
	事業化製品化支援担当	専門家派遣事業、研修・セミナーの開催
	デザイン支援担当	デザインを活用した価値向上・課題解決支援
北部研究所	食品・パイオ技術担当 食品プロジェクト担当	微生物・酵素利用、発酵生産、有用微生物の検索及び造成、食品衛生管理、食品加工、 食品工学、機能性食品
	材料・機械技術担当	化学分析、機器分析、強度試験、精密測定、腐食試験、機械装置技術

受託研究手続きの流れ

お客様の研究課題について十分な打ち合わせを行うために、まずは当センターまでお問い合わせください。

受託研究の実施期間は、原則として当該 年4月(又は当該年の契約日)から翌年 3月までの期間内です。

研究終了後、お客様に受託研究報告書を提 出いたします。

お客様(委託者)

① 受託研究の契約締結
② 受託研究の契約締結
② 受託研究の契約締結

埼玉県産業技術総合センター(受託者)

お問い合わせ

埼玉県産業技術総合センター【本所】

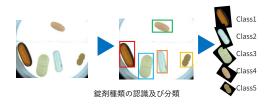
企画・総務室 企画担当

〒333-0844 埼玉県川口市上青木3-12-18 TEL: 048-265-1312 FAX: 048-265-1334 E-mail (共通): sien@saitec.pref.saitama.jp 埼玉県産業技術総合センター【北部研究所】

総務・事業化・製品開発支援担当 〒360-0031 埼玉県熊谷市末広2-133 TEL: 048-521-0614 FAX: 048-525-6052

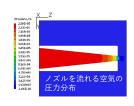
受託研究制度のご案内

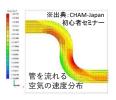
- 製品開発で問題が発生して困っている。
- クレームの発生の原因を突き止めたい。
- 精密測定・分析を行いたいが、方法やデータの見方がわからない。etc...


そんな技術課題にお応えします。

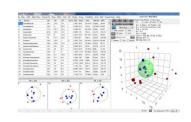
受託研究 事例紹介

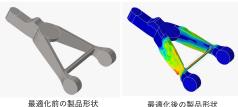
埼玉県産業技術総合センターでは、中小企業の新製品開発及び研究開発 を支援する、受託研究制度を設けています。この制度は、当センター職 員が企業に代わって研究開発(有料)を実施するものです。 ここでは、受託研究の例をご紹介いたします。


▼例1 Al画像ソフトウェアによる解析


AI画像ソフトウェアで種別分類や製品の良品・ 不良品判別を可能にする学習モデルを作成でき、 AI導入の効果検証(可能性調査)ができます。

熱流体解析 事例 2


PHOENICSを用いて、空気、水のような流体の 圧力、流速、温度分布などの変化を計算し可視 化することができます。


事例 6 HSPを用いた溶解性の評価

Hansenの溶解度パラメータ(HSP)を用いて、 物質の溶解性や分散性の評価が可能です。

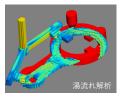
製品形状の最適化 事例 5

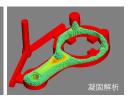
Altair® OptiStruct®を用いて、製品の軽量化や高 剛性化に最適な形状を自動計算することができ ます。

最適化後の製品形状

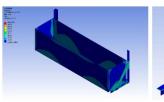
電解研磨技術の開発 事例 9

毒劇物を含まない液を用いた電解研磨について、 研磨可否や電解条件の検討などを行うことがで きます。


専 10 射出成形装置による開発


少量の樹脂ペレットからダンベルなどの試験片 が成形可能で、精密部品の試作や新規樹脂素材 の開発が可能です。

湯流れ・凝固解析 事例3


JSCAST®を用いて、鋳造の湯流れ・凝固シミュ レーションを実施することで、湯流れの可視化 や鋳造欠陥の予測ができます。

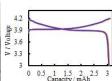
事例 4 構造解析

Ansys Mechanical Pro等を用いて、変位分布 や応力分布を計算し、製品の強度評価を行うこ とができます。

ブラケットの応力評価

食品の特性評価 事例7

味覚センサやガスクロマトグラフ/質量分析装 置(GC/MS)等を用いて、味、香り、食感などの 総合的な評価により、食品開発に役立てます。



電極解析、充放電評価 事例8

電池における電極の解析や、二次電池用の正極 活物質の充放電評価が可能です。

M. Inamoto, H. kurihara, T. Yajima, Materials 2013, 6(10), 4514-4522

専∅ 11 3Dプリンタによる製品開発支援

3Dプリンタを用いて試作をすることにより、 部品形状の検討を行うことができます。

Objet260 Connex3 (本所) Raise 3D E2 (北部) 【FDM(熱溶解)方式】 実際の製品に近い素材を使用可能 例) 強度の高いPC、耐候性のあるASA等

機械装置の試作支援 事例 12

部品試作、試作機の検証等を行い、製品化支援 を行います。写真は、農業機械である「ハクサ イ頭部結束装置」の例です。

