▼ 河川底質のサンプリングについての一考察

- 重 金 属 と 粒 度 分 布 に つ い て -

Investigation for Sampling Method of River Sediment

河川水質科 杉崎三男・野辺 博*・丸山由喜雄

(*昭和55年4月1日 埼玉県春日部保健所へ転出)

1 はじめに

何川水中の有害物質等は、多くの場合、定量限界以下 の農度であるので評価することはむずかしい。

河川底質は水質と異なり、一過性のものではなく蓄積 性であり、有害物質等が高濃度で存在するために、分析 か盛んに行われている。しかしなから、底質のサンプリ ングや分析定量を行ううえで、多くのことに考慮する必 要がある。たとえば、サンプリングの時には、河川の流 れ方、水量、採取位置、底質の性状、汚染源の有無など。 また、分析定量のときには、ふるい分け、酸分解、定量 方法、定量時における共存物質などである。

底質のサンブリンクについての研究は、あまり多くな されていない。

当初年報において、30地点を25×30mメッシュ で採取し、分析・考察を行った。¹⁾

また、鎗田らによって、河川と沼について研究が行われた。²⁾河川の場合、3×6 mメノシュで37 地点を採取し分析・考察をした。

山県らは、山形県吉野川の底質について、粒度別に重 金属濃度を求めた。³⁾ その結果、200メノシュ以上(粒 子直径74 μ m以下)の分画に、大部分の鉛、亜鉛が存 在していると報告した。

本研究では、荒川の2地点(秋ケ瀬堰上虎、久下橋) で、河川の横断方向に一定間隔でサンブリングを行った。 試料をふるい分けをし、粒度別に重金属濃度を求め、一 考察を行ったので報告する。

2 実 験

2.1 底質のサンプリンク方法と採取地の概要
 2.1.1 秋ケ頭

荒川河口から37 Km地点で、秋ヶ瀬のサンプリング地 点の河川断面図を Flg.1 - [I]に示した。底質の採取 は、エクマンバーシ採泥器を用いた。川幅は126 m、 最大水深は45mであった。サンプリングは、約10m おきに14地点で行った。流心での水深は一定であった。 流心(地点8)の流速は、水深05mで006m/s、 1m、2m、35mで、005m/s以下であった。 底質の性状は、流心部で砂質であり、川岸で黒い泥土 を含む砂であった。

2.1.2 久下橋

荒川河口から735 Lm地点で、採取時は5月であった が、平年に比べ雨量が少なく褐水状態であった。

同地点の断面図をFig.1 - 〔Ⅱ〕に示した。秋ヶ瀬に
 比較して、川幅も水深もかなり小さい。川幅は37m、
 最大水深095mであった。サンプリングは、ひしゃく
 を用いて約3mの間隔で、12地点の試料を採取した。
 流速は、最大で005m/s(地点4)であったが、
 通常は、05m/s前後の流速があるものと思われる。

-28-

試料は、地点1と12は泥土・小石を含んだ砂で、他 行った。その結果を秋ケ瀬、久下橋について、それぞれ は、小石を含む砂であった。

2.2 ふるい分け

試料は、室温で自然乾燥させた後、JIS規格のふる いにより、9、16、48、100、200メノシュの ものを用いて、ふるい分けを行った。9、16、48、 100、200メ,シュのふるい目の開きは、2、1、 0297、0149、0074mmである。

ふるい分けは、試料509を20分間、290 rpm、 156 tpm のふるい振とう機(関西ワイヤー・ネッテ ィング㈱)を用いて行った。ふるい分けの後に、各分画 の粒度分布(重量%)を求めた。

2.3 各分画の水分含有率と強熱減量

水分含有率と強熱減量は、「底質調査法とその解説」 により求めた。

2.4 試料の前処理

試料は目的に応じて酸分解を行った。分解法は、「底質 調査方法とその解説」により、ヒ素は硫酸ー硝酸分解を 行い、鉛、銅と鉄は、塩酸一硝酸分解を行い、ろ過後 0 ml定容とした。

2.5 定量法

ヒ素はヒ化水素として発生させ、シエチルジチオカル バミン酸銀ーピリシン溶液に吸収させ、遊離した銀コロ イドを比色定量した。比色計は島津スベクトロニック 88 を用いた。鉛と銅は、pH9~95クエン酸存在下で、 ジエチルジチルカルバミン酸塩として酢酸nーブチルに抽 出し、酢酸nーフチル裕液を直接原子吸光法により定量し た。鉄は、分解液を適宜希釈した水溶液を原子吸光法に より定量を行った。原子吸光光度計は、日立508Aを 用いた。

3 結果とその考察

3.1 ふるい分け

ふるい分けの条件を決めるために、秋ヶ瀬地点8の試 料を用い分取量を変えて、各分画の粒度分布(重量%) を求めた。結果をFig.2に示した。

分取量100~9008と比較的多くのサンプル量を とったとき、16~48メノシュ分画(粒子直径1~ 0297mm)に多く分布し、その割合は50%を超える。 分取量25、508をとったとき、48~100メッ シュ分画(0.297~0149mm)が優占となる。

これは、試料が多い場合、優占となるふるい目がつま る。それ以上のメッシュに分配されなくなるものと思わ れる。

従って、以後508のサンプルを分取しふるい分けを

Table I、 IIに示した。

Fig.2 ふるい分けにおける試料分取量の影響 試料:秋ヶ瀬、地点8 分取量(分): 25(○)、60(△)、100(●)、200(□)、 $400(\chi), 900(\forall)$

Table I 秋ヶ 頗の 粒 度	分布
-------------------	----

(単位 %)

分画	9~16	16~ 48	48~ 100	100~ 200	200 <	備考
1	-	1 3	26 3	56 7	15.6	Muddy
2	-	1.5	53 1	24 3	21 0	Muddy
3		63	77 1	12 7	4 0	Muddy
4		11.1	75.6	11.3	20	Sandy
5	_	40.9	56 2	21	0 72	Sandy
6		47 9	48 9	19	1 2	Sandy
7	-	39 8	56.1	25	16	Sandy
8	-	46 1	51.5	16	08	Sandy
9		51 3	45.2	24	1 0	Sandy
10	-	50.8	46 1	1 2	16	Sandy
11	-	33 1	49 7	99	58	Sandy
12		4.7	33.9	32 5	28 5	Muddy
13		23 3	32 0	24.3	20. 1	Muddy
11		2.5	17-8	36, 0	13. 8	Muddy

-29-

Table I 久 下 橋 の 粒 度 分 布 (単位 %)

分画	9~16	16~ 48	48~ 100	100~ 200	200 <	備 考
1	13 0	45 3	26 2	83	75	Muddy
2	11 6	72.7	12 5	23	09	Sandy
3	23 7	61 3	11 8	24	0 73	Sandy
4	44.2	74 2	20.3	0.91	0.43	Sandy
5	45	76 3	17 8	1 1	0 35	Sandy
6	40	66 2	27 0	2 1	0 61	Sandy
7	25	65.2	29 1	2 2	0 87	Sandy
8	0 75	52 2	43 3	30	0 75	Sandy
9	39	49.7	38 7	5.8	16	Sandy
10	73	44 6	39 5	68	17	Sandy
11	18 0	47 6	27 4	53	1.6	Sandy
12	15	11. 7	44 8	29 2	12 8	Muddy

秋ヶ顔では16メッシュ以下(粒子直径1mm以上)の 分画はほとんどなかった。

性状で分類した砂質、泥質について、砂質は 16~100 メッシュ分画(粒子直径1~0.149 mm)が優占であり、泥 質は、100メッシュ以上(同0149 mm)が優占であった。

3.2 水分含有率と強熱減量

秋ヶ瀬、久下橋の結果を、それぞれ、上段に水分含有 率、下段に強熱減量を、TableⅢ、Nに示した。

Table III 秋ヶ瀬の試料分画の水分含有率と

强熱减量								
分画	9~16	16~ 48	48~ 100	100~ 200	200 <	9 <		
1		$\begin{smallmatrix} 5 & 8 \\ 22 & 1 \end{smallmatrix}$	$\begin{smallmatrix}1&8\\3&48\end{smallmatrix}$	$\begin{smallmatrix}1&4\\2&79\end{smallmatrix}$	$\begin{smallmatrix}2&8\\5&75\end{smallmatrix}$	$\begin{smallmatrix}1&8\\3&59\end{smallmatrix}$		
2	_	$\begin{smallmatrix}1&2\\3&70\end{smallmatrix}$	$\begin{smallmatrix} 0 & 8 \\ 1 & 85 \end{smallmatrix}$	$\begin{smallmatrix}1&4\\2&63\end{smallmatrix}$	$\begin{smallmatrix}4&7\\6&04\end{smallmatrix}$	$\begin{smallmatrix}1&7\\2&27\end{smallmatrix}$		
3	_	${0 \atop 1.45}^{0}$	$\begin{smallmatrix}0&55\\1&39\end{smallmatrix}$	$\begin{smallmatrix}&0&50\\1&41\end{smallmatrix}$	$\begin{smallmatrix}2&0\\4&42\end{smallmatrix}$	$\begin{smallmatrix} 0 & 70 \\ 1 & 57 \end{smallmatrix}$		
4		${}^{0.42}_{139}$	${0.37 \\ 1 29}$	$\begin{smallmatrix}&0&16\\0&59\end{smallmatrix}$	$\begin{smallmatrix}1&2\\3&84\end{smallmatrix}$	$\begin{array}{c} 0.59 \\ 1 35 \end{array}$		
5	_	${}^{0.46}_{135}$	$ \begin{array}{c} 0 & 32 \\ 1 & 27 \end{array} $	0 30 1.18	2.5 690	$\begin{smallmatrix} 0 & 66 \\ 1 & 22 \end{smallmatrix}$		
6		$\begin{smallmatrix}0&32\\1&36\end{smallmatrix}$	$\begin{smallmatrix}0&26\\1&33\end{smallmatrix}$	$\begin{smallmatrix} 0 & 16 \\ 1 & 11 \end{smallmatrix}$	$ \begin{array}{ccc} 2 & 62 \\ 5 & 89 \end{array} $	$\begin{smallmatrix}0&55\\1&25\end{smallmatrix}$		
7		$ \begin{array}{c} 0.39 \\ 1.46 \end{array} $	${}^{0}_{1}$ ${}^{35}_{36}$	$ \begin{array}{c} 0 & 40 \\ 1. & 92 \end{array} $	$ \begin{array}{c} 1 & 9 \\ 6. 38 \end{array} $	$\begin{smallmatrix}1&2\\1.36\end{smallmatrix}$		
8		${}^{0.43}_{1\ 18}$	$ \begin{array}{c} 0 & 42 \\ 1. & 10 \end{array} $	$\begin{smallmatrix} 0 & 23 \\ 0 & 70 \end{smallmatrix}$	$\begin{smallmatrix}2&0\\5&42\end{smallmatrix}$	$\begin{smallmatrix} 0 & 46 \\ 1 & 14 \end{smallmatrix}$		
9	-	$\begin{smallmatrix} 0 & 40 \\ 1 & 21 \end{smallmatrix}$	$\begin{smallmatrix}0.&29\\1&23\end{smallmatrix}$	0.21 092	$\begin{array}{ccc} 1 & 4 \\ 4 & 63 \end{array}$	$\begin{smallmatrix} 0 & 44 \\ 1 & 16 \end{smallmatrix}$		
10	_	${}^{0}_{1.24}$	$\begin{smallmatrix}&0&38\\1&20\end{smallmatrix}$	$\begin{smallmatrix}&0&28\\0&81\end{smallmatrix}$	$ \begin{array}{c} 2 & 1 \\ 5. & 60 \end{array} $	$\begin{smallmatrix} 0 & 51 \\ 1 & 22 \end{smallmatrix}$		
11		${}^{0}_{1} {}^{50}_{52}$	$\begin{smallmatrix} 0 & 47 \\ 1 & 51 \end{smallmatrix}$	$\begin{smallmatrix}1&0\\1&86\end{smallmatrix}$	$\begin{array}{c}2&9\\4.87\end{array}$	$\begin{smallmatrix} 0 & 88 \\ 1 & 60 \end{smallmatrix}$		
12		$ \begin{array}{c} 1.0 \\ 2.26 \end{array} $	$\begin{smallmatrix}1&2\\2&12\end{smallmatrix}$	$\begin{smallmatrix}1&7\\2&53\end{smallmatrix}$	$\begin{smallmatrix}4&1\\5&72\end{smallmatrix}$	$\begin{smallmatrix}2&7\\3&80\end{smallmatrix}$		
13	-	${}^{0.81}_{167}$	$1.3 \\ 2.21$	$\begin{smallmatrix}2&2\\3&29\end{smallmatrix}$	$\begin{smallmatrix}5&4\\6&22\end{smallmatrix}$	2. 8 2. 68		
14	_	${}^{0}_{2.47}$	$\begin{smallmatrix}1&6\\3&57\end{smallmatrix}$	$\begin{smallmatrix}2&1\\3&88\end{smallmatrix}$	$\begin{smallmatrix}4&8\\7&16\end{smallmatrix}$	$\begin{smallmatrix}4&6\\4&67\end{smallmatrix}$		
上段:水分含有率(%) 下段:強熱減量(%)								

分画	9~16	16~ 48	48~ 100	100~ 200	200 <	9 <		
1	0 21 1 15	$\begin{array}{c} 0 & 3 \\ 1 & 51 \end{array}$	0 60 2 20	$\begin{array}{ccc} 1 & 18 \\ 4 & 24 \end{array}$	3 19 10 42	0 96 2 80		
2	0. 18 0. 75	$\begin{array}{c} 0 & 27 \\ 1 & 13 \end{array}$	$ \begin{array}{ccc} 0 & 50 \\ 1 & 60 \end{array} $	$\begin{array}{c} 0 & 73 \\ 5 & 16 \end{array}$	$\begin{array}{ccc}1&78\\7&40\end{array}$	0 35 1 29		
3	0 18 0 81	0.23 112	0 53 1 96	$\begin{array}{c} 0 & 64 \\ 2 & 50 \end{array}$	$\begin{array}{ccc} 1 & 27 \\ 6 & 73 \end{array}$	0 35 1 21		
4	$\begin{array}{ccc} 0 & 21 \\ 1 & 11 \end{array}$	$\begin{array}{c} 0 & 41 \\ 1 & 19 \end{array}$	0 63 1.63	$\begin{array}{c} 0 & 67 \\ 2 & 57 \end{array}$	$\begin{array}{ccc}1&54\\5&52\end{array}$	$\begin{array}{c} 0 & 47 \\ 1 & 50 \end{array}$		
5	0 31 0 90	0.46 124	0 66 1 56	1 03 2.77	$\begin{array}{ccc} 1 & 59 \\ 6 & 43 \end{array}$	$\begin{array}{c} 0 & 65 \\ 1 & 36 \end{array}$		
6	0 17 0 96	0 26 1 25	0 54 1 65	0.56 229	1 31 5 82	$\begin{array}{c} 0 & 44 \\ 1 & 46 \end{array}$		
7	0 22 1.09	0.36 136	0 53 1 66	0 64 2 18	1 49 5 70	$\begin{array}{c} 0 & 58 \\ 1 & 48 \end{array}$		
8	$ \begin{array}{c} 0.16 \\ 110 \end{array} $	0 41 1 35	$ \begin{array}{c} 0 & 62 \\ 1 & 54 \end{array} $	0 69 2 22	1 62 5 78	$ \begin{array}{c} 0 & 60 \\ 1 & 52 \end{array} $		
9	0 18 0.80	$\begin{array}{c} 0 & 37 \\ 1 & 32 \end{array}$	0 60 1 61	$\begin{array}{c} 0 & 66 \\ 2 & 12 \end{array}$	$\begin{array}{ccc}1&24\\4&44\end{array}$	$ \begin{array}{c} 0 & 57 \\ 1 & 69 \end{array} $		
·10	0 62 0 94	0 18 1 32	0.34 179	$ \begin{array}{c} 0.72 \\ 2 12 \end{array} $	$ \begin{array}{ccc} 0 & 54 \\ 5 & 44 \end{array} $	$ \begin{array}{r} 1 54 \\ 1 52 \end{array} $		
11	0 20 0 89	$\begin{array}{c} 0 & 25 \\ 1 & 21 \end{array}$	0.45 1.75	$\begin{array}{ccc} 0 & 62 \\ 2 & 16 \end{array}$	$ \begin{array}{r} 1 & 26 \\ 4 & 56 \end{array} $	$\begin{array}{c} 0 & 51 \\ 1 & 41 \end{array}$		
12	0 33 1 81	$\begin{smallmatrix}&0&43\\&1&74\end{smallmatrix}$	$\begin{array}{c} 0 & 68 \\ 2 & 14 \end{array}$	0 80 2 48	$\begin{array}{ccc} 1 & 60 \\ 4 & 10 \end{array}$	0 81 2 56		
Ŀ	上段:水分含有率(%) 下段:強熱减量(%)							

水分含有率は、秋ケ顔の試料では016~58%の範 囲にある。16~48×,シュ(粒子直径1~0297 mm)、48~100×,シュ(同0.297~0.149mm)、 100~200×,シュ(同0.149~0074mm)、 200×,シュ以上(同0074mm以下)の平均は、そ れぞれ、096、0.72、0.86、288%であった。 地点1016~48×,シュ分画は、多量の植物片の混 入により高い値を示した。地点1を除いた平均は059 %であり、粒子が細かくなるに従って水分含有率は大き くなる。

強熱減量は059~22.1%の範囲にあり、16~48、 48~100、100~200、200メノシュ以上と 9メッシュ以上の分画の平均は、316、177、183、 563と207%であった。16~48メノシュ分画の 地点1を除いた平均は171であり、水分含有率と同じ 傾向を示す。ただし、100~200メノシュ分画は、 地点4、8、9、10と低値を示すが、鉄の含有量が、 それぞれ、22.7、225、156、16.3%であり、 鉄が砂鉄として存在し、600℃の高温で酸化され、重 量増加のためであると思われる。

久下橋については、結果をTable №に示した。 水分含有率は、016~319%の範囲にあり、9~ 16、16~48、48~100、100~200、200

- 3 0 -

メッシュ以上分画の平均は、025、033、056、 075、15%であり、粒子が細かくなるに従って、水 分含有率は増大する。

また、強熱咸量は、9~16、16~48、48~100、 100~200、200メッシュ以上の分画の平均値は それぞれ、102、131、176、273、602% であり、水分含有率と同様の傾向を示す。

3.3 重金属について

各分画試料の分析結果をもとに、地点ごとに次式によ り算出値を求めた。

算出值(ppm、%)=

 Σ 分画の重金属農度(ppm、%)×その粒度分布(%) 1 0 0

F1g.3、5、7、9に、重金属の算出値と分画の占め

る量を、地点ごとに棒グラフで示した。

また、「底質調査法とその解説」に示している9メノ シュ以上の分画の分析値と上記の式により求めた算出値 との相関を、F1g.4、6、8、10に示した。黒丸は秋 ケ瀬、白丸は久下橋を示す。回帰直線は、秋ヶ瀬と久下 橋の全地点について求めた。回帰直線は、算出値と9メ 、シュ以上の分画の分析値が一致すれば、原点を通る傾 き1の直線(図中に破線で示す。)となる。

秋ヶ頗について、 Table Vに分析元素別に各地点間 分画ごとの平均値と変動系数を示した。全地点(₩)、 泥質(M)、砂質(S)について示した。泥質と砂質の 区分はTable Iの備考に示してある。また16~48メ 、シュ分画のカノコ書きは地点1を除いた平均値、変動 係数を示す。

Element		Fe		Pb		As		Cu	
Mesh		Mean (%)	C.V. (%)	Mean (ppm)	C.V. (%)	Mean (ppm)	C.V. (%)	Mean (ppm)	C.V. (%)
	W	2.19 × (1 99)	$(97)^{15}$	9 30 (8 15)	$(52 \ 2)^{92 \ 8}$	$\begin{pmatrix} 8 & 85 \\ (6 & 83) \end{pmatrix}$	$(\begin{array}{c} 83 & 7 \\ (47 & 7) \end{array})$	$(\begin{array}{c} 22.7\\ (17\ 7)\end{array})$	$(\begin{array}{ccc} 59 & 1 \\ (37 & 2) \end{array})$
$16 \sim 48$	М	$\begin{pmatrix} 2 & 58 \\ (2 & 13) \end{pmatrix}$	$\binom{43.1}{(65)}$	$(13 \ 50) (11 \ 36)$	$\begin{smallmatrix} 92 & 1 \\ (49 & 1 \) \end{smallmatrix}$	$ \begin{array}{c} 13 & 65 \\ (9 & 32) \end{array} $	$(\begin{smallmatrix} 80 & 4 \\ (45. & 7) \end{smallmatrix})$	$(\begin{smallmatrix} 34 & 2 \\ 27 & 0 \end{smallmatrix})$	$(22 \ 3)^{80}$
	S	1 89	88	6.14	17 7	5 26	29 5	14 2	19 8
	W	2. 92	28 1	7 87	34 6	5 97	29 5	20 9	48 3
$48 \sim 100$	М	2 48	2 97	9 95	29 9	7 42	13 5	29 1	39 6
	S	3 17	31 9	6 30	15.0	4 89	9. 7	15 8	18 8
	W	10. 79	62 5	11 07	23 3	7 33	18 0	29 4	36 4
$100 \sim 200$	М	4 58	51 1	12 32	29 0	7 41	13 5	34 5	41 2
	S	15.45	35 6	10.14	97	6 62	11. 3	25 5	15 1
	W	5.96	39 6	23 63	18 4	15 76	22 8	60 7	31 1
200 <	М	4 57	51 1	25 62	18 1	18 21	22 7	67 3	41 7
	S	7 02	35 1	22.14	17 0	13.80	18 5	55 8	10 6
9 <	W	3 61	15 7	8 46	53 2	6 74	38 6	22 4	59 1
	М	3 68	15 9	12 31	37 5	9 03	27 3	33 6	41 5
	S	3 36	16 4	5.57	7 1	5.03	13.2	14 1	8 7

Fable V	秋ヶ瀬試料の)各分画につい	てのFe、	Pb,	As,	Cuの平均値と変動係数
---------	--------	---------	-------	-----	-----	-------------

C.V.:変動係数 W:全地点(14) M:泥質(6) S:砂質(8)
 * 地点1を除いた地点の平均値
 ** 地点1を除いた地点の変動係数

3.3.1 鉄

底質中で、一番多く存在する重金属は鉄である。 Table Vに示したように秋ヶ瀬では、 100~200 メッシュ分画の鉄濃度の平均値は105%であり、また ンュ以上の分画ではあまり差がなかった。 泥質(M)と砂質(S)の平均値は、それぞれ、45と

154%で、砂質の100~200メッシュに局在して いることが明らかである。これは、砂質中に砂鉄状の鉄 として存在しているものと思われる。また、200メッ

Flg.3から、地点4、8が他に較べて大きな値となっ

-31 -

(1)16 $\sim 48~{\rm mesh}$ $248 \sim 100$ mesh (3)100 ∼ 200 mesh ④ 200 mesh 以上

ている。地点4では、100~200メノシュ分画の鉄 濃度が高く、地点8では、48~100メノシュ分画の 粒度分布が50%を超え、他の地点の分画よりも鉄濃度 が高いことによる。他の地点での算出値は、ほぼ同じ値 を示す。

久下橋では、秋ヶ瀬のように一つの分画に局在するこ とはなく、粒子直径が小さくなるに従って鉄農度は高く なる。

また、Fig.4から、秋ヶ瀬では9メノシュ以上の分画 の鉄農度が、計算により求めた算出値より高い値を示し ばらつきも多い。久下橋では、9メノシュ以上の分画の 鉄濃度と算出値は、ほぼ同じ値が得られ破線上に集まっ ている。これは、秋ヶ顑の試料が、久下橋のものよりも 一つの分画に局在しているために、秤量時の試料の分取 によるばらつきが大きいためと思われる。

3. 3. 2 鉛

秋ヶ顒では、Fig.5に示したように流心部の算出値は 小さく、川岸部では大きい。

-32-

 $(\widehat{1})$ 16 \sim 48 mesh

(2)48 ~ 100 mesh (3)100 ~ 200 mesh ④ 200 mesh 以上

これは、Table Vに示したように、粒子直径が小さ くなるに従って平均値は大きくなる。粒子が、100メ , シュ以上であれば平均値は、砂質も泥質も差はあまり ない。川岸部の値が大きいのは、粒子直径の小さい分画 久下橋も、川岸部が流心部よりも纂出値が大きい。

の占める割合が大きくなるためである。(Table I) また、変動係数は泥質の地点間より、砂質の地点間の 方が小さい。

-33-

F1g6について、秋ケ瀬では算出値が9メッシュ以上 の分画の分析値よりも大きな値を示すが、久下橋では破 線(原点を通る傾き1の直線)付近に点在し、算出値と 分析値の一致がみられる。

秋ヶ瀬、久下橋の全地点の相関は、 0.95とよい結果 を示している。

F1g.4とF1g.6から、秋ケ瀬の鉛は鉄と異なった挙動 を示している。鉄は算出値が9メノシュ以上の分画の分 析値より小さい。鉛はその逆である。同一の分解液を用 いたので、鉄が鉛の抽出や原子吸光法による定量時にお いて影響するものと思われる。

3.3.3 と 素

ヒ素は他の重金属と異なり、硫酸と硝酸を用いて分解 しているので、秤量時の試料分取について、他と同一で はない。

① 16 ~ 48 mesh ② 48 ~ 100 mesh ③ 100 ~ 200 mesh ④ 200 mesh 以上

-34-

Table Vに示すように、性状から分類した砂質と泥質 の平均値は、どの分画も泥質の方が大きい。変動係数は 泥質より砂質の方が小さく、地点間の変動は小さい。

久下橋では、図や表に示していないが、川岸部での算 出値は流心部の値よりも大きい。秋ケ概と同じ挙動を示 す。F1g.8に計算から求めた算出値と9メ,シュ以上の分 画の分析値との関係を示した。相関係数 r=0 95 と相 関性があり、回帰直線からの算出値は 9メ,シュ以上の 分画の分析値よりも大きい。

 Fig.8
 ヒ素の算出値と9メッシュ以上の分画

 の分析値との相関

 $y = 0 \ 91 \ x + 0 \ 326$ (r = 0.95)

-35-

3.3.4 銅

前述の鉛やヒ素と同様な挙動を示し、流心部での算出 値は小さく、川岸部で大きい。(Fig.9)

秋ヶ瀬の試料について、分画ごとの地点間の平均値と 変動係数をTable Vに示す。

銅農度は、砂質より泥質の方が大きく、粒子直径が小 さくなるに従って大きくなる。16~48メノシュ分画 において地点1を除く平均値、変動係数をカノコ内に示 した。平均値と変動係数とも小さくなっている。植物片 の混入により地点1は、他の地点と明らかに異なった組 成を示している。

F1g.10に、銅の算出値と9メッシュ以上の分画の分 析値との相関を求めた。9メッシュ以上の分析値は、算 出値より低値を与える。秋ケ顔の試料は、久下橋に比較 してばらつきが大きい。久下橋の試料は、破線付近に点 在している。鉛同様鉄の農度に強く影響されているもの と思われる。 4 まとめ

考察についてまとめると、

(1) ふるい分けは、分取量を509を限度とする。それ以上の分取量では目づまりをおこす。(Fig.2)

(2) 鉄について、秋ヶ瀬では、砂質と泥質という区分 で異なった挙動を示す。砂質では、砂鉄状で局在する地 点があり、泥質では、粒子直径が小さくなるに従って、 鉄農度が増大している。久下橋では、秋ヶ瀬の泥質と同 様の挙動を示す。(Fig.3、4、Table V)

(3) 鉛・銅・ヒ素は、同様の挙動を示し、流心部(砂質)は低農度で、川岸部(泥質)で高農度であった。粒 子直径が小さくなるに従って、金属農度は増加する。

(4) 試料採取時の外見的様相(すなわち、泥質、砂質 や粘土質など)によって、粒度分布や金属濃度は大きく 左右される。

(5) 砂質と泥質の変動係数を比較すると、砂質は泥質 よりも小さい。(Table V)

以上、述べたまとめは、秋ヶ瀬、久下橋についてのみ の考察にとどまった。今後、工場排水の流入する河川や 生活雑排水の流入する何川についても研究する必要があ ると思う。

また、重金属の定量法の改良や主成分分析により、底 質の起原を知ることにより、パックグラントを求め、人 為的汚染の度合を知る必要がある。

参考文献

- 1) 埼玉県公害センター年報 ル3(1976) 43~46
- 2) 鎗田、小林他、千葉県水質保全研究所研究報告 第 5号(1978) 11~25
- 3) 山県他、公衆衛生院研究報告 20(1971)
 170~186
- 4)環境庁水質管理課編、「底質調査方法とその解説」日本環境測定分析協会(1975)

-36-