光通信部品・半導体部品等の接合における複合膜応用に関する研究

黒河内昭夫*山本 誠*高橋誠一郎*井上裕之*原口靖史*小田嶋宏明** 柏木邦宏***

Research on Method of Bondig Composite Membrane Used for Optical Communication Parts and Semiconductor Parts, Etc.

KUROKOUCHI Akio*, YAMAMOTO Makoto*, TAKAHASHI Seiichiro*, INOUE Hiroyuki* HARAGUCHI Yasushi*, ODAJIMA Hiroaki**, KASHIWAGI Kunihiro***

抄録

光通信用フィルター部品はレンズとパッケージで構成されている。そのレンズ と本体の接合用にイオンプレーティング法を用いて Au/Sn 系半田膜を試作した。作 製した膜の評価、接合性能を検証した結果、成膜方法・接合条件などによって接 合性が異なることが判明した。その内ガラス同士の接合性能は十分に得られた。

キーワード:鉛フリー半田,イオンプレーティング,接合,Au/Sn,積層膜

1.はじめに

光通信フィルターはレンズとパッケージで構成 されている。この部品はレンズとパッケージを接 合するために半田材が用いられている(図1参照 ¹⁾)。しかし、印刷機によるフラックス半田によっ て接合された製品は、フラックスの流失によるレ ンズの汚染や、膜の厚みによるレンズの傾きなど を生じ、問題を起こしている。また、近年鉛レス 半田の要求も高まっており、EUで審議されてい る「鉛を含む有害物質規制(RoHS)」が、200 6年7月から実施されることになり²⁾、電気・電子 機器に使用されている半田の鉛フリー化を急速に 推進することが今後の企業存続を決定する重要な 項目になりつつある。本報告では高周波イオンプ レーティング法(真空蒸着法)による鉛レス半田 膜を作製し、その接合性などの基礎データを検

* 材料技術部

** 東邦化研株式会社

*** 東洋大学工学部物性工学研究室

証した。

図1 光通信フィルター例¹⁾

2.実験

2.1 半田膜の作製

半田膜は高周波イオンプレーティング法を用い、RF 電 力100W, DC バイアス電圧100Vの Ar プラズマ 雰囲気中で成膜した。バルクAu:Sn2元合金の共晶 点は重量比は約8:2であり、融点は300 弱になる ³⁾。重量比から算出すると体積比は約5:3になる。 各層の膜厚は第1層にTi0.1µm(下地処理用)第 2層にAu0.2µm第3層にSn1.2µm第4層にAu1.6µ mの積層膜とした。積層させることで Au:Sn の8 :2重量比を確実に作製できる。

- 2 膜の評価
 膜の評価と評価機器を以下に示す。
- 1) Au/Snの重量比測定: 蛍光 x 線膜厚計(SII製SE A5230)
- 2) 膜厚測定:表面粗さ計(㈱東京精密製サーフコム140 0-3DF)
- 3) 表面形状や断面観察など:FE-SEM (JOEL製JSM -6330F),SPM (JOEL製JSPM-4210)
- 4) 深さ方向の化学組成: XPS(KRATOS製AXIS ultr a)
- 5) 接合力評価: 強度試験機(SHIMADZU製AUTOGRAP H AG-100KNI)
- 2.3 接合法
- 2.3.1 ガラス基板

厚さ8mmのソーダガラス基板に成膜したテスト ピースの成膜面同士を対向させ、図2に示すよう な治具に納め、窒素雰囲気中で昇温速度約16 /m in維持温度300 前後の温度を30分、約117.6kPa (12kgf/cm²)の圧縮圧力をかけ、接合させた。 2.3.2 アルミニウム基板

厚さ2mmのA6063アルミニウム合金基板にバフ研 磨・研削・アルミナプラストなどを施し、その上 から成膜を行った。接合はガラス基板と同様の治 具を用いたが、ガラス程度の圧縮圧力では足りな いため、トルクレンチを用いて12N・mの力で締め た。接合条件は前項に準じた。

図2 接合用治具

- 2.4 接合強度試験
- 2.4.1 ガラス基板

接合させたテストピースを図3に示す治具にセ

ットした後、JIS K 6852に準じて圧縮剪断試験を 行った。圧縮速度は500µm/minとし、破断したと きの最大荷重を記録した。

図3 圧縮剪断試験

2.4.2 アルミニウム基板

接合させたテストピースは JIS K 6850に準じた 引張剪断試験を行った。引張荷重速度は500 µ m /min とし、破断したときの最大荷重を記録した。

3.結果及び考察

3.1 膜の表面形態

SEMで観察した結果、表面形状はSnの成膜レートに大きく依存していることが判明した。図4~5 はSn成膜レートの違いによるSn単層膜SEM像を示す。

図 4 成膜レート20 /sで成膜したSn単層膜

図 5 成膜レート100 /sで成膜したSn単層膜

通常成膜レートを遅く設定することにより緻密 な膜を得られることが多いものの、Snにおいては その反対の傾向を示した。図4ではSn成膜レート が遅いので膜の密度が低く、凹凸の大きな膜を観 察した。一方、Auは成膜レートに依らず緻密な構 造を示すため、Au/Sn積層膜とした際、Snの成膜 レートが表面形状に大きく影響するものと考えら れる。

膜の表面粗さRaをAFMのコンタクトモードで測 定した結果を図6~図7に示す。同図のRaはそれぞ れ114.5nm, 33.8nmであった。

図7 成膜レート100 /SのSn単層膜AFM

表面形状の影響は次項で言及するが、凹凸が大 きくなると接合性への影響を与える。また、膜密 度の低下によりガス封止性の悪化や膜最表層に錫 酸化物を形成することになり、膜の品質に悪影響 を与えることも考えられる。

3.2 加熱による膜の変化

図8にはSn成膜レート100 /Sで作製したAu0.5 µm/Sn1.0µmの2層膜のXPS重量比を示した。図 9には同じものを約300 ×10minで加熱処理した 結果を示す。図8の結果から深さ方向の化学組成 は、Au膜からやがてSnが現れ始め、さらに深くな るとAu成分よりSn成分が多くなることが分かる。 これはAu層とSn層の界面はやや拡散しているもの の、積層状態にあることを示している。それに対 し図9は加熱によりAuとSnが拡散し、最表面は錫 酸化物が確認されるが、表面からほぼ均一な分布 を示す。このことから、積層膜は加熱によって合 金化することができることが確認された。

したがって、本研究による Au/Sn 積層膜は加 熱により合金化し、膜厚比によって管理された重 量比によって溶融点300 弱を保証できることが 言える。

図 8 無処理サンプルのXPS分析結果

図 9 加熱処理サンプルのXPS分析結果

3.3 接合強度試験結果

3.3.1 ガラス基板に成膜した接合試験

成膜レートと接合温度をパラメーターにとった 接合強度試験の結果を図10~12に示す。同図は横 軸に接合させたときの温度、縦軸に圧縮荷重をと り、最大圧縮荷重(破断荷重)をプロットしたグ ラフである。また、データのバラツキを示すため 最大値と最小値を線で結んだ。荷重値0は接合に 至らなかったことを示す。

試験後に破断したテストピースを観察した結 果、材破率100%(ガラス材においての接合性能 を満たしている状態)も得られた。

図10~12では、接合温度250 において、成膜 レート50 /S の一部が接合したものの、ほとん どのテストピースが接合できなかった。接合温度 300 では、成膜レート75 /S のものが一部材破 合したが破断荷重はバラツキが多い。接合温度 350 では、成膜レート50 /S のバラツキが多い 結果となった。しかし、成膜レートが大きくなる ほどバラツキが少なく、また材破率100%を示す ものが多い傾向となった。このことから膜の融点 300 弱ではあるが、接合に必要な炉雰囲気温度 は300 以上要すことが判明した。また、Sn 成膜 レートの高い方が接合強度が高いことも判明し た。このことは前項で述べた膜の表面形態が接合 にも影響を及ぼしていることが考えられる。図13 に材破率100%の状態と図14に一部界面破壊した 状態を示す。

図13 材破率100%の状態

図14 不完全な接合状態

3.3.2 アルミニウム基板

ガラス基板による接合試験結果から Sn 成膜レ ート100 /s・接合温度350 の条件が接合の信頼 性が大きいことが分かった。ここでは接合強度と 基板の表面粗さの関連を調査するためアルミ基板 を3タイプ用意し評価した。 #800のエメリー紙 で研磨し、最後にアルミナバフ研磨を行った。 研削肌のまま アルミナブラストを行い、面を粗 くした。各表面粗さは表1とおり。

図15は基板状態別接合試験結果を示す。ガラス は破断圧縮荷重をプロットし、その他は破断引張 荷重をプロットした。同図から表面粗さ Ra 値が 低いほど接合力が高いことを示している。さらに ガラス基板による圧縮試験力より接合強度が低い ことから、ガラスの表面粗さは非常に小さいこと によってアルミニウム基板での接合強度より高い 数値を示したと考える。また、アルミニウムの熱 膨張率はソーダガラスの熱膨張率よりも高く、被 着剤の体積変化が接合に影響したことと考える。

衣「衣山祖さ		
基板の処理	Ra (µm)	Rz (µm)
バフ研磨	0.2120	1.0480
研削	0.3517	2.3556
ブラスト	2.7889	20,2890

± = - - -

図15 アルミ基板による引張試験

4.まとめ

高周波イオンプレーティング法によって作製し た Au/Sn 積層膜をろう材として用いた際の接合 強度を検証した。その結果、成膜条件による膜そ のものの表面形状が接合に影響を与えることを解 明した。また、ガラス同士の接合では完全に接合 することができ、表面粗さによる接合強度データ も得られた。

今後の課題として、実際に光通信フィルターに 用いられているような異種材料同士の接合として ガラスとアルミニウム材の接合の検証を行う。

参考文献

1)特開平11-095070「光通信用パッケージ」

- 2) JEITA(社)電子情報産業協会:プレスリリ-ス, HP,(2002.12)
- 3) 平林眞,長崎誠三:二元合金状態図集,アグ ネ技術センター,(2002)65